
INTRO TO STRUCTURED
PREDICTION IN 3 ACTS

Steve Ash

www.manycupsofco�ee.com

http://localhost:4000/talks/www.manycupsofcoffee.com

ABOUT ME
BA, MS, PhD (in Spring '17) Computer Science
10 years building banking and healthcare software
5 years leading a "skunkworks" R&D team

AGENDA
What is Structured Prediction?

Act 1: How to solve this problem in 1996?

generative models

Act 2: How to solve this problem in 2006?

discriminative models

Act 3: How to solve this problem in 2016?

recurrent neural networks

INTRO
What is Structured Prediction?

WHAT IS STRUCTURED PREDICTION
Common machine learning tasks:

Classi�cation: input data to �xed number of output
classes/categories

Is this credit card transaction fraudulent?
Does this patient have liver disease?

Regression: input data to continuous output

Prospective student's future GPA based on
information from his/her college application

What about classi�cation over a sequence of information?

WHAT IS STRUCTURED PREDICTION
Assign part-of-speech tags to sequence of words:

"Steve plays piano sometimes"

WHAT IS STRUCTURED PREDICTION
The sequence of words — i.e. the structure — a�ects the

part-of-speech. We need to incorporate this structure
into the predictive method that we want to use in order

to improve our accuracy.

Without the structure we can't disambiguate words that
have more than one part-of-speech:

"Will Bob will the will to Will?"

QUICK BACKGROUND
In probabilistic modeling we model our inputs and

outputs as random variables.

Coin �ip P(X = heads) = 0.5

In the part-of-speech example, we had a sequence of
words and a sequence of POS tags.

 = the word at time
 = the predicted POS tag at time

Xt t
Yt t
P(= NOUN) = 0.1232Yt

QUICK BACKGROUND
Joint probability distribution
P(X = will, Y = NOUN)

Conditional probability distribution
P(Y = NOUN|X = will)

Relationship: P(X, Y) = P(X|Y) × P(Y)

Bayes Rule: P(Y|X) =
P(X|Y)×P(Y)

P(X)

JOINT VS CONDITIONAL
Joint distribution knows everything about P(X, Y)

NOUN VERB ADJ
dog 13423 34 0

walk 4300 7400 0

cat 12002 12 0

short 904 3123 4339
Frequency table- each cell is how many occurrences you have seen

JOINT VS CONDITIONAL
Joint distribution knows everything about P(X, Y)

P(X = short, Y = VERB) = 0.0686

NOUN VERB ADJ
dog 0.2948 0.0007 0.0000

walk 0.0944 0.1625 0.0000

cat 0.2636 0.0003 0.0000

short 0.0199 0.0686 0.0953
Joint distribution- each cell divided by sum of all counts

JOINT VS CONDITIONAL
Conditional distribution only has information about a

single row/column

P(X = short|Y = VERB) = 0.2955

NOUN VERB ADJ
dog 0.2948 0.0007 0.0000

walk 0.0944 0.1625 0.0000

cat 0.2636 0.0003 0.0000

short 0.0199 0.0686 0.0953

dog 0.0032

walk 0.7002

cat 0.0011

short 0.2955

P(X|VERB)

ACT 1
Generative Models

HIDDEN MARKOV MODELS
Assume that the thing you are interested in can be

modeled as a sequence of hidden states, where at each
state some value is emitted, and that's all you can see.

Goal: �nd a path through the hidden states that best
explains what you see

States? paths? Sounds like a job for automata

HIDDEN MARKOV MODELS
Models the real world process as:

Select a starting state (or have a single starting state)
emit an observed value from this state
transition to the next state
assume that you can predict the next state using only
the previous states - markov property
...

k

Hidden State NOUN VERB NOUN ADVERB

Emitted Value Steve plays piano sometimes

t = 0 t = 1 t = 2 t = 3

HIDDEN MARKOV MODELS
Each path has an overall probability, and thus we want to

�nd the most probable path.

 - prob of transitioning from state to
 - prob of state emitting value

 - prob of starting from state

Aij Yi Yj
(k)Bm k m

πi i

 observed sequence:Ot

= Steve, = plays,…O0 O1

 hidden sequence:Qt

= NOUN, = VERB,…Q0 Q1

HIDDEN MARKOV MODELS
So our inference problem is:

P(Q|O) =
P(O|Q) × P(Q)

P(O)

Since the right hand numerator is , we
basically have to estimate the whole joint probability

distribution of words and POS tags.

P(O|Q) × P(Q)

An interesting property of models formulated like this is
that we can use the probability model to generate new

instances from our data population.

HIDDEN MARKOV MODELS
Problems:

Each hidden state's emission probabilities is a
probability distribution.
States with many possible emission values have to
spread that probability mass out.
More states means lower and lower overall sequence
probability
If we don't need to generate values, we don't need the
full joint distribution. We just want ...P(Q|O)

ACT 2
Discriminative Models

CONDITIONAL RANDOM FIELDS
In contrast to generative models like HMMs,

discriminative models don't bother trying to represent
the real underlying process that results in the evidence

that you observe.

Instead they just model the output directly: P(Y|X)

In 2001, a �exible, discriminative approach to structured
prediction was introduced called:

Conditional Random Fields (CRFs)

CONDITIONAL RANDOM FIELDS

Undirected graph - markov random �eld
Factors on state transitions and factors on X to Y (sounds like an
HMM right? but wait!)
Factors are not probability distributions — they don't have to sum to
one
We normalize over the entire sequence, not at each step

CONDITIONAL RANDOM FIELDS
Sorry for the math :(

p(y|x) = exp{ (, , x)}1

Z(x) ∏
t=1

T

∑
k=1

K

θkfk yt yt−1

The is normalizing over the whole sequence
Most important part is feature function:

1
Z(x)

(, , x)fk yt yt−1

CONDITIONAL RANDOM FIELDS
Feature function (, , x)fk yt yt−1

 output label at time
 output label at previous time step

 whole input sequence

yt t
yt−1
x

Can use information from any part of the input sequence
for step - much more �exible than HMMt

CRFs can have many feature functions (millions is not
uncommon)

Regularization and the discriminative aspect of CRFs
allow them to e�ectively deal with sparse features

CONDITIONAL RANDOM FIELDS
POS tagging example feature functions:

Return 1 if this word end in -ly
Return 1 if the next word end in -ly
Return 1 if sequence ends in a '?'
Return 1 if the next word is an article (a, an, etc)
Return 1 if the prev word is a preposition (of, at, to, etc)

Provide expert knowledge via feature engineering. Let
optimization �gure out which parts are important and

which aren't.

CONDITIONAL RANDOM FIELDS
Optimization is tractable because the CRF equation is

convex and we can use typical gradient + Hessian
methods to �nd optimal parameters in �nite time.

In practice, million features with ~100,000 training
examples takes 3-10 hours on gcloud 32 core instances.

CONDITIONAL RANDOM FIELDS
Optimization is tractable because the CRF equation is

convex and we can use typical gradient + Hessian
methods to �nd optimal parameters in �nite time.

In practice, million features with ~100,000 training
examples takes 3-10 hours on gcloud 32 core instances.

CONDITIONAL RANDOM FIELDS
Comparing performance on address sequence tagging

123 W Main St

ST_NUMBER PRE_DIRECTIONAL STREET DESIGNATOR

Token Accuracy Sequence Accuracy
HMM ~90% ~80%

CRF 98.99% 96.67%

Sorry I don't have the precise numbers for the HMM version, and I didn't have time to dig
it out of git and re-run

CONDITIONAL RANDOM FIELDS
Problems:

Linear-chain CRFs can only use previous step(s) like
HMMs
Given the larger feature space, CRFs degenerate
quicker with higher-orders (compared to HMMs)
Still a lot of feature engineering to do
... wouldn't it be nice if we could automate that...

ACT 3
Recurrent Neural Networks

DEEP LEARNING
Deep learning is a huge umbrella term for fancy neural

network topologies + lots of tricks to make training
robust

Feed Forward Neural Networks for classi�cation,
regression
Need some memory to allow previous time steps to
in�uence future time steps

LONG SHORT-TERM MEMORY NEURAL
NETWORKS

Recurrent neural networks have self-connections that
provide such a memory
Consequence of back propagation through many
layers: _vanishing_ gradient
Want: a way to remember things across activations
(and forgetting is important too)

LSTMS
Cell is the internal memory across activations
Gates to control that internal memory

Forget gate - Should we forget the prev value?
Input gate - How much should we update our cell?
Output gate - How much should we output?

Net e�ect: ability to learn long term memories, gradient
doesn't vanish

LSTMS
One example of a performance comparison: Predicting

phonemes for words

"discussion" → dɪˈskʌʃən
Word Accuracy % Improve

HMM 0.7520

CRF 0.7592 0.96%

LSTM 0.7870 4.65%

TAKEAWAYS
HMMs are generative, CRFs are discriminative. They
model di�erent things with probabilities.
HMMs can be extended to higher orders more easily
than CRFs
LSTMs aren't statistical machines at all (for better, for
worse)
LSTMs are state-of-the-art for many tasks

USE HMMS WHEN:
Structure in output is more important than structure
in input

use higher order HMMs
You want a probabilistic model

for Bayesian treatments, domain speci�c
regularization, etc.

Simple and fast execution — compared to others
You want to learn a model, then use that to generate
sequences

USE CRFS WHEN:
Structure in input is more important than structure in
output

Use lower order chain with rich feature functions
Lots of information in the input side, especially when
you want non-local features
You want a probabilistic model

Interpretable probabilities since its conditioned over
entire sequence

USE LSTMS WHEN:
State of the art accuracy is the most important concern
(not compactness or speed)
You have fast GPUs or a lot of cloud time (training can
be pretty long)
You have some experience with deep learning

Toolkits are improving, but still a lot of black magic,
rules of thumb
I think its easier to screw up LSTMs than HMMs
(could be wrong in near future)

QUESTIONS?
Andrew Moore's tutorials
Andrew Moore's HMM tutorial
Intro to CRFs
Colah's Blog - LSTM Info

http://www.cs.cmu.edu/~awm/tutorials.html
http://www.autonlab.org/tutorials/hmm.html
http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/
http://colah.github.io/posts/2015-08-Understanding-LSTMs

